Строение и принцип работы солнечного элемента

Как работают солнечные элементы

В солнечных элементах и панелях (батареях) солнечных элементов для получения электрического тока используется энергия Солнца - мощность потока солнечного излучения на один квадратный метр составляет примерно 1350 Ватт.

Принцип действия солнечного элемента

Строение простого солнечного элемента и основной принцип его действия следующие. Берется обычный полупроводник - две пластины, присоединенные друг к другу. Они изготовлены из кремния с добавлением в каждую из них определенных примесей, благодаря которым получаются элементы с нужными свойствами: первая пластина имеет избыток валентных электронов, у второй же, наоборот, их недостаточно. В итоге, в полупроводнике есть слой отрицательно заряженный и слой положительно заряженный, т.е. слои «n» и «p».

Строение_солнечного_элемента

На самой границе соприкосновения этих пластин находится зона запирающего слоя. Этот слой препятствует переходу избыточных электронов из слоя «n» в слой «p», где электронов не хватает (места с отсутствующими электронами называют дырками). Если подключить к подобному полупроводнику внешний источник питания («+» к «p» и «-» к «n»), то внешнее электрическое поле заставит электроны преодолеть замыкающую зону и через проводник потечет ток.

Нечто подобное происходит и при действии солнечного излучения на солнечный элемент. Когда фотон света влетает в слои «n» и «p», он передает свою энергию высвобождаемым электронам (находящимся на внешней оболочке атомов), а на их месте появляется дырка. Электроны с полученной энергией свободно преодолевают запирающий слой полупроводника и переходят из слоя «p» в слой «n», а дырки, наоборот, переходят из слоя «n» в слой «p».

Этому переходу электронов их области «p» в область «n» и дырок из области «n» в область «p» также способствуют электрические поля положительных зарядов, находящийся в зоне «n» проводника и отрицательных - в зоне «p», которые будто втягивают в себя, одни - электроны, другие - дырки. В итоге, слой «n» приобретает дополнительный отрицательный заряд, а «p» - положительный. Результатом этого явления будет появление в полупроводнике разности потенциалов (напряжения) между двумя пластинами близкой к 0.5 В.

Сила электрического тока, который может генерировать солнечный элемент, изменяется пропорционально количеству захваченных поверхностью фотоэлемента фотонов. Этот показатель, в свою очередь, также зависит от множества дополнительных факторов: интенсивности светового излучения, площади фотоэлемента, времени эксплуатации, КПД устройства, зависит от температуры (при ее повышении, проводимость фотоэлемента значительно падает).

Вот почему нужно помнить о следующем: солнечные элементы (фотоэлементы, батареи) не способны быть очень мощными, они не могут работать в непрерывном режиме (через естественную смену дня и ночи), для стабилизации основных параметров - силы тока и напряжения - появляется необходимость в использовании дополнительных устройств (стабилизаторы, аккумуляторы и т.д.).

Но как дополнительный источник электроэнергии они прекрасно могут использоваться в тех местах, где требуются небольшие мощности и нет возможности подключится к городской электромагистрали. При совмещении работы солнечного элемента и электрического аккумулятора, получается полностью автономная система электроснабжения, которую можно использовать в районах с хорошей солнечной освещенностью и потребностью в малых электрических мощностях.

Строение солнечного элемента

 

Строение_солнечного_элемента

На изображении, показанном выше, можно видеть, что верхний слой p-n перехода, который имеет избыток электронов, соединен с металлическими пластинами, которые выполняют роль положительного электрода, пропуская свет и добавляя элементу дополнительную жесткость. Нижний слой в конструкции солнечного элемента имеет недостаток электронов, к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.

Считается, что в идеале солнечная батарея имеет близкий к 20% КПД. Однако на практике и по данным специалистов сайта www.sun-battery.biz он примерно равен всего 10%, при том, что для некоторых солнечных батарей он больше, для некоторых меньше. В основном это зависит от технологии, по которой выполнен pn переход. Наиболее применяемыми и имеющими наибольший процент КПД, продолжают быть солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все более распространенными.

К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические имеют исключительно черно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи изготавливаются методом литья, они оказались дешевле в производстве. Однако и в поли-, и в монокристаллических пластин есть один недостаток - конструкции солнечных батарей на их основе не имеют гибкости, которая в некоторых случаях нужна.

Ситуация изменилась с появлением в 1975 году солнечного элемента на основе аморфного кремния, активный элемент которого имеет толщину от 0,5 до 1 мкм и обеспечивает ей гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на свойство аморфного кремния поглощать свет, которая примерно в 20 раз выше, чем у обычного кремния, эффективность солнечных батарей такого типа не превышает 12%. Для моно-и поликристаллических вариантов он может достигать 17% и 15% соответственно.

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей.

Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве добавок для изготовления пластины, которая производит положительный заряд, используется бор, а для отрицательно заряженных пластин - мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря им солнечные батареи становятся менее чувствительными к перепадам окружающих температур.

Большинство солнечных батарей могут накапливать энергию, представляя собой так называемые системы. Учитывая, что солнечные элементы производят электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически ненужными. С системами на солнечных батареях все по-другому. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его производит, а ночью накопленный заряд может отдаваться потребителям.

Русский

Добавить комментарий

Пользовательский поиск